21

PRZEWODY OCHRONY PRZECIWPORAŻENIOWEJ

21.1. Przewody ochronne PE

Przewody ochronne (rys. 21.1) łączą części przewodzące dostępne z uziemionym punktem neutralnym uzwojeń transformatora (sieć TN) lub z uziomem ochronnym (sieć TT i IT). Przewód ochronny może również łączyć część przewodzącą dostępną z główną szyną uziemiającą.
a)

b)

c)

Rys. 21.1. Przewody ochronne PE w sieciach: a) TN, b) TT, c) IT

Przewód ochronny PE powinien spełniać wymagania dotyczące jego przekroju. Ponieważ przewód ten podlega obciążeniu podczas przepływu prądów zwarć jednofazowych (sieć TN), zwarć jednofazowych doziemnych (sieć TT) oraz zwarć jednofazowych doziemnych lub zwarć dwufazowych (sieć IT), stąd jego przekrój S powinien spełniać warunek

$$
\begin{equation*}
S \geq \frac{I \sqrt{t}}{k} \tag{21.1}
\end{equation*}
$$

w którym: S - pole przekroju przewodu ochronnego, $\mathrm{mm}^{2} ; I$ - prąd zwarciowy płynący przez przewód ochronny, A; t - czas przepływu prądu zwarciowego (czas działania urządzenia zabezpieczającego), $\mathrm{s} ; k$ - współczynnik określający gęstość jednosekundową prądu zwarciowego w przewodzie ochronnym, którego wartość zależy od materiału żyły, izolacji oraz jego temperatury początkowej i końcowej, $\frac{\mathrm{A}}{\mathrm{mm}^{2}}$ (tabl. $21.1 \div 21.3$).

Uzasadnienie przyjętej jednostki gęstości jednosekundowej prądu podano w p. 14.3. Jeżeli pole przekroju S przewodu, obliczone ze wzoru (21.1), nie jest wartością znormalizowaną, to należy zastosować przewód o przekroju równym najbliższemu, większemu od wartości obliczonej, przekrojowi znormalizowanemu.

Zależność (21.1) można przedstawić w postaci

$$
\begin{equation*}
k^{2} S^{2} \geq I^{2} t \tag{21.2}
\end{equation*}
$$

Wyrażenie $k^{2} S^{2}$ określa pojemność cieplną przewodu i jego izolacji (minimalna wartość, którą należy przyjąć, aby zapobiec niedopuszczalnemu wzrostowi temperatury przewodu). Wyrażenie $I^{2} t$ określa ciepło wydzielone przez prąd w przewodzie.

W tablicy 21.1 podano temperatury końcowe przewodów o określonej izolacji. Są to dopuszczalne w końcu trwania zwarcia temperatury przewodów, podane przez producenta. Przyjęta początkowa wartość temperatury przewodu $30^{\circ} \mathrm{C}$ jest równa temperaturze otoczenia, gdyż zakłada się, że jeżeli przewód nie stanowi żyły przewodu wielożyłowego, to nie jest on nagrzewany od żył przewodów fazowych w czasie ich normalnej pracy obciążeniowej. Jeżeli przewód ochronny nie jest pokryty izolacją (przewód goły) i styka się z osłoną przewodów roboczych, to również i w tym przypadku nie dopuszcza się temperatury wyższej tego przewodu w końcu trwania zwarcia niż dopuszczalna dla przewodów roboczych o określonej osłonie.

W przypadku przewodów ochronnych, stanowiących żyłę przewodu wielożyłowego (tabl. 21.2), temperatura początkowa jest różna dla przewodów o różnej izolacji. Jako temperaturę początkową przyjęto dopuszczalną długotrwale temperaturę przewodu, zakładając, że przepływ prądu zwarciowego rozpocznie się w przewodzie obciążonym i nagrzanym do takiej temperatury.

